Проект по математике "криптография как метод кодирования и декодирования информации". Кодирование и шифрование информации Кодирование и шифрование информации

Необходимость в шифровании переписки возникла еще в древнем мире, и появились шифры простой замены. Зашифрованные послания определяли судьбу множества битв и влияли на ход истории. Со временем люди изобретали все более совершенные способы шифрования.

Код и шифр - это, к слову, разные понятия. Первое означает замену каждого слова в сообщении кодовым словом. Второе же заключается в шифровании по определенному алгоритму каждого символа информации.

После того как кодированием информации занялась математика и была разработана теория криптографии, ученые обнаружили множество полезных свойств этой прикладной науки. Например, алгоритмы декодирования помогли разгадать мертвые языки, такие как древнеегипетский или латынь.

Стеганография

Стеганография старше кодирования и шифрования. Это искусство появилось очень давно. Оно буквально означает «скрытое письмо» или «тайнопись». Хоть стеганография не совсем соответствует определениям кода или шифра, но она предназначена для сокрытия информации от чужих глаз.

Стеганография является простейшим шифром. Типичными ее примерами являются проглоченные записки, покрытые ваксой, или сообщение на бритой голове, которое скрывается под выросшими волосами. Ярчайшим примером стеганографии является способ, описанный во множестве английских (и не только) детективных книг, когда сообщения передаются через газету, где малозаметным образом помечены буквы.

Главным минусом стеганографии является то, что внимательный посторонний человек может ее заметить. Поэтому, чтобы секретное послание не было легко читаемым, совместно со стеганографией используются методы шифрования и кодирования.

ROT1 и шифр Цезаря

Название этого шифра ROTate 1 letter forward, и он известен многим школьникам. Он представляет собой шифр простой замены. Его суть заключается в том, что каждая буква шифруется путем смещения по алфавиту на 1 букву вперед. А -> Б, Б -> В, ..., Я -> А. Например, зашифруем фразу «наша Настя громко плачет» и получим «общб Обтуа дспнлп рмбшеу».

Шифр ROT1 может быть обобщен на произвольное число смещений, тогда он называется ROTN, где N - это число, на которое следует смещать шифрование букв. В таком виде шифр известен с глубокой древности и носит название «шифр Цезаря».

Шифр Цезаря очень простой и быстрый, но он является шифром простой одинарной перестановки и поэтому легко взламывается. Имея подобный недостаток, он подходит только для детских шалостей.

Транспозиционные или перестановочные шифры

Данные виды шифра простой перестановки более серьезны и активно применялись не так давно. В Гражданскую войну в США и в Первую мировую его использовали для передачи сообщений. Его алгоритм заключается в перестановке букв местами - записать сообщение в обратном порядке или попарно переставить буквы. Например, зашифруем фразу «азбука Морзе - тоже шифр» -> «акубза езроМ - ежот рфиш».

С хорошим алгоритмом, который определял произвольные перестановки для каждого символа или их группы, шифр становился устойчивым к простому взлому. Но! Только в свое время. Так как шифр легко взламывается простым перебором или словарным соответствием, сегодня с его расшифровкой справится любой смартфон. Поэтому с появлением компьютеров этот шифр также перешел в разряд детских.

Азбука Морзе

Азбука является средством обмена информации и ее основная задача - сделать сообщения более простыми и понятными для передачи. Хотя это противоречит тому, для чего предназначено шифрование. Тем не менее она работает подобно простейшим шифрам. В системе Морзе каждая буква, цифра и знак препинания имеют свой код, составленный из группы тире и точек. При передаче сообщения с помощью телеграфа тире и точки означают длинные и короткие сигналы.

Телеграф и азбука был тем, кто первый запатентовал «свое» изобретение в 1840 году, хотя до него и в России, и в Англии были изобретены подобные аппараты. Но кого это теперь интересует... Телеграф и азбука Морзе оказали очень большое влияние на мир, позволив почти мгновенно передавать сообщения на континентальные расстояния.

Моноалфавитная замена

Описанные выше ROTN и азбука Морзе являются представителями шрифтов моноалфавитной замены. Приставка «моно» означает, что при шифровании каждая буква изначального сообщения заменяется другой буквой или кодом из единственного алфавита шифрования.

Дешифрование шифров простой замены не составляет труда, и в этом их главный недостаток. Разгадываются они простым перебором или частотным анализом. Например, известно, что самые используемые буквы русского языка - это «о», «а», «и». Таким образом, можно предположить, что в зашифрованном тексте буквы, которые встречаются чаще всего, означают либо «о», либо «а», либо «и». Исходя из таких соображений, послание можно расшифровать даже без перебора компьютером.

Известно, что Мария I, королева Шотландии с 1561 по 1567 г., использовала очень сложный шифр моноалфавитной замены с несколькими комбинациями. И все же ее враги смогли расшифровать послания, и информации хватило, чтобы приговорить королеву к смерти.

Шифр Гронсфельда, или полиалфавитная замена

Простые шифры криптографией признаны бесполезными. Поэтому множество из них было доработано. Шифр Гронсфельда — это модификация шифра Цезаря. Данный способ является значительно более стойким к взлому и заключается в том, что каждый символ кодируемой информации шифруется при помощи одного из разных алфавитов, которые циклически повторяются. Можно сказать, что это многомерное применение простейшего шифра замены. Фактически шифр Гронсфельда очень похож на рассмотренный ниже.

Алгоритм шифрования ADFGX

Это самый известный шифр Первой мировой войны, используемый немцами. Свое имя шифр получил потому, что алгоритм шифрования приводил все шифрограммы к чередованию этих букв. Выбор самих же букв был определен их удобством при передаче по телеграфным линиям. Каждая буква в шифре представляется двумя. Рассмотрим более интересную версию квадрата ADFGX, которая включает цифры и называется ADFGVX.

A D F G V X
A J Q A 5 H D
D 2 E R V 9 Z
F 8 Y I N K V
G U P B F 6 O
V 4 G X S 3 T
X W L Q 7 C 0

Алгоритм составления квадрата ADFGX следующий:

  1. Берем случайные n букв для обозначения столбцов и строк.
  2. Строим матрицу N x N.
  3. Вписываем в матрицу алфавит, цифры, знаки, случайным образом разбросанные по ячейкам.

Составим аналогичный квадрат для русского языка. Например, создадим квадрат АБВГД:

А Б В Г Д
А Е/Е Н Ь/Ъ А И/Й
Б Ч В/Ф Г/К З Д
В Ш/Щ Б Л Х Я
Г Р М О Ю П
Д Ж Т Ц Ы У

Данная матрица выглядит странно, так как ряд ячеек содержит по две буквы. Это допустимо, смысл послания при этом не теряется. Его легко можно восстановить. Зашифруем фразу «Компактный шифр» при помощи данной таблицы:

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Фраза К О М П А К Т Н Ы Й Ш И Ф Р
Шифр бв гв гб гд аг бв дб аб дг ад ва ад бб га

Таким образом, итоговое зашифрованное послание выглядит так: «бвгвгбгдагбвдбабдгвдваадббга». Разумеется, немцы проводили подобную строку еще через несколько шифров. И в итоге получалось очень устойчивое к взлому шифрованное послание.

Шифр Виженера

Данный шифр на порядок более устойчив к взлому, чем моноалфавитные, хотя представляет собой шифр простой замены текста. Однако благодаря устойчивому алгоритму долгое время считался невозможным для взлома. Первые его упоминания относятся к 16-му веку. Виженер (французский дипломат) ошибочно считается его изобретателем. Чтобы лучше разобраться, о чем идет речь, рассмотрим таблицу Виженера (квадрат Виженера, tabula recta) для русского языка.

Приступим к шифрованию фразы «Касперович смеется». Но, чтобы шифрование удалось, нужно ключевое слово — пусть им будет «пароль». Теперь начнем шифрование. Для этого запишем ключ столько раз, чтобы количество букв из него соответствовало количеству букв в шифруемой фразе, путем повтора ключа или обрезания:

Теперь по как по координатной плоскости, ищем ячейку, которая является пересечением пар букв, и получаем: К + П = Ъ, А + А = Б, С + Р = В и т. д.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Шифр: Ъ Б В Ю С Н Ю Г Щ Ж Э Й Х Ж Г А Л

Получаем, что "касперович смеется" = "ъбвюснюгщж эйхжгал".

Взломать шифр Виженера так сложно, потому что для работы частотного анализа необходимо знать длину ключевого слова. Поэтому взлом заключается в том, чтобы наугад бросать длину ключевого слова и пытаться взломать засекреченное послание.

Следует также упомянуть, что помимо абсолютно случайного ключа может быть использована совершенно разная таблица Виженера. В данном случае квадрат Виженера состоит из построчно записанного русского алфавита со смещением на единицу. Что отсылает нас к шифру ROT1. И точно так же, как и в шифре Цезаря, смещение может быть любым. Более того, порядок букв не должен быть алфавитным. В данном случае сама таблица может быть ключом, не зная которую невозможно будет прочесть сообщение, даже зная ключ.

Коды

Настоящие коды состоят из соответствий для каждого слова отдельного кода. Для работы с ними необходимы так называемые кодовые книги. Фактически это тот же словарь, только содержащий переводы слов в коды. Типичным и упрощенным примером кодов является таблица ASCII — международный шифр простых знаков.

Главным преимуществом кодов является то, что расшифровать их очень сложно. почти не работает при их взломе. Слабость же кодов — это, собственно, сами книги. Во-первых, их подготовка — сложный и дорогостоящий процесс. Во-вторых, для врагов они превращаются в желанный объект и перехват даже части книги вынуждает менять все коды полностью.

В 20-м веке многие государства для передачи секретных данных использовали коды, меняя кодовую книгу по прошествии определенного периода. И они же активно охотились за книгами соседей и противников.

"Энигма"

Всем известно, что "Энигма" — это главная шифровальная машина нацистов во время II мировой войны. Строение "Энигмы" включает комбинацию электрических и механических схем. То, каким получится шифр, зависит от начальной конфигурации "Энигмы". В то же время "Энигма" автоматически меняет свою конфигурацию во время работы, шифруя одно сообщение несколькими способами на всем его протяжении.

В противовес самым простым шифрам "Энигма" давала триллионы возможных комбинаций, что делало взлом зашифрованной информации почти невозможным. В свою очередь, у нацистов на каждый день была заготовлена определенная комбинация, которую они использовали в конкретный день для передачи сообщений. Поэтому даже если "Энигма" попадала в руки противника, она никак не способствовала расшифровке сообщений без введения нужной конфигурации каждый день.

Взломать "Энигму" активно пытались в течение всей военной кампании Гитлера. В Англии в 1936 г. для этого построили один из первых вычислительных аппаратов (машина Тьюринга), ставший прообразом компьютеров в будущем. Его задачей было моделирование работы нескольких десятков "Энигм" одновременно и прогон через них перехваченных сообщений нацистов. Но даже машине Тьюринга лишь иногда удавалось взламывать сообщение.

Шифрование методом публичного ключа

Самый популярный из который используется повсеместно в технике и компьютерных системах. Его суть заключается, как правило, в наличии двух ключей, один из которых передается публично, а второй является секретным (приватным). Открытый ключ используется для шифровки сообщения, а секретный — для дешифровки.

В роли открытого ключа чаще всего выступает очень большое число, у которого существует только два делителя, не считая единицы и самого числа. Вместе эти два делителя образуют секретный ключ.

Рассмотрим простой пример. Пусть публичным ключом будет 905. Его делителями являются числа 1, 5, 181 и 905. Тогда секретным ключом будет, например, число 5*181. Вы скажете слишком просто? А что если в роли публичного числа будет число с 60 знаками? Математически сложно вычислить делители большого числа.

В качестве более живого примера представьте, что вы снимаете деньги в банкомате. При считывании карточки личные данные зашифровываются определенным открытым ключом, а на стороне банка происходит расшифровка информации секретным ключом. И этот открытый ключ можно менять для каждой операции. А способов быстро найти делители ключа при его перехвате — нет.

Стойкость шрифта

Криптографическая стойкость алгоритма шифрования — это способность противостоять взлому. Данный параметр является самым важным для любого шифрования. Очевидно, что шифр простой замены, расшифровку которого осилит любое электронное устройство, является одним из самых нестойких.

На сегодняшний день не существует единых стандартов, по которым можно было бы оценить стойкость шифра. Это трудоемкий и долгий процесс. Однако есть ряд комиссий, которые изготовили стандарты в этой области. Например, минимальные требования к алгоритму шифрования Advanced Encryption Standart или AES, разработанные в NIST США.

Для справки: самым стойким шифром к взлому признан шифр Вернама. При этом его плюсом является то, что по своему алгоритму он является простейшим шифром.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение

высшего профессионального образования

«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

КАФЕДРА ПРИКЛАДНОЙ МАТЕМАТИКИ

Кодирование и шифрование информации

по дисциплине: Информатика

Реферат выполнил

Студент гр. 1532 И.А. Иванов

подпись, дата инициалы, фамилия

Руководитель

Ст. преподаватель Соколовская М. В.

должность, уч. степень, звание подпись, дата инициалы, фамилия

Санкт-Петербург 2015

  • Оглавление
  • Введение
  • 1. Кодирование
  • 2. Кодирование двоичным кодом

3. Кодирование целых и действительных чисел

4. Кодирование текстовых данных

5. Универсальная система кодирования текстовых данных

6. Кодирование графических данных

7. Кодирование звуковой информации

8. Шифрование

  • 9. Цели шифрования
  • 10. Методы шифрования
  • Литература

Введение

То, что информация имеет ценность, люди осознали очень давно - недаром переписка сильных мира сего издавна была объектом пристального внимания их недругов и друзей. Тогда-то и возникла задача защиты этой переписки от чрезмерно любопытных глаз. Древние пытались использовать для решения этой задачи самые разнообразные методы, и одним из них была тайнопись - умение составлять сообщения таким образом, чтобы его смысл был недоступен никому, кроме посвященных в тайну. Есть свидетельства тому, что искусство тайнописи зародилось еще в доантичные времена. На протяжении всей своей многовековой истории, вплоть до совсем недавнего времени, это искусство служило немногим, в основном верхушке общества, не выходя за пределы резиденций глав государств, посольств и - конечно же - разведывательных миссий. И лишь несколько десятилетий назад все изменилось коренным образом - информация приобрела самостоятельную коммерческую ценность и стала широко распространенным, почти обычным товаром. Ее производят, хранят, транспортируют, продают и покупают, а значит - воруют и подделывают - и, следовательно, ее необходимо защищать. Современное общество все в большей степени становится информационно-обусловленным, успех любого вида деятельности все сильней зависит от обладания определенными сведениями и от отсутствия их у конкурентов. И чем сильней проявляется указанный эффект, тем больше потенциальные убытки от злоупотреблений в информационной сфере, и тем больше потребность в защите информации. Одним словом, возникновение индустрии обработки информации с железной необходимостью привело к возникновению индустрии средств защиты информации.

Среди всего спектра методов защиты данных от нежелательного доступа особое место занимают криптографические методы. В отличие от других методов, они опираются лишь на свойства самой информации и не используют свойства ее материальных носителей, особенности узлов ее обработки, передачи и хранения. Образно говоря, криптографические методы строят барьер между защищаемой информацией и реальным или потенциальным злоумышленником из самой информации. Конечно, под криптографической защитой в первую очередь - так уж сложилось исторически - подразумевается шифрование данных. Раньше, когда эта операция выполнялось человеком вручную или с использованием различных приспособлений, и при посольствах содержались многолюдные отделы шифровальщиков, развитие криптографии сдерживалось проблемой реализации шифров, ведь придумать можно было все что угодно, но как это реализовать.

1. Кодирование

Естественные языки обладают большой избыточностью для экономии памяти, объем которой ограничен, имеет смысл ликвидировать избыточность текста, существуют несколько способов:

1. Переход от естественных обозначений к более компактным. Этот способ применяется для сжатия записи дат, номеров изделий, уличных адресов и т.д. Идея способа показана на примере сжатия записи даты. Обычно мы записываем дату в виде 10. 05. 01. , что требует 6 байтов памяти ЭВМ. Однако ясно, что для представления дня достаточно 5 битов, месяца- 4, года- не более 7, т.е. вся дата может быть записана в 16 битах или в 2-х байтах.

2. Подавление повторяющихся символов. В различных информационных текстах часто встречаются цепочки повторяющихся символов, например пробелы или нули в числовых полях. Если имеется группа повторяющихся символов длиной более 3, то ее длину можно сократить до трех символов. Сжатая таким образом группа повторяющихся символов представляет собой триграф S P N , в котором S - символ повторения; P - признак повторения; N- количество символов повторения, закодированных в триграфе. В других схемах подавления повторяющихся символов используют особенность кодов ДКОИ, КОИ- 7, КОИ-8 , заключающуюся в том, что большинство допустимых в них битовых комбинаций не используется для представления символьных данных.

3. Кодирование часто используемых элементов данных. Этот способ уплотнения данных также основан на употреблении неиспользуемых комбинаций кода ДКОИ. Для кодирования, например, имен людей можно использовать комбинации из двух байтов диграф PN, где P - признак кодирования имени, N - номер имени. Таким образом может быть закодировано 256 имен людей, чего обычно бывает достаточно в информационных системах. Другой способ основан на отыскании в текстах наиболее часто встречающихся сочетании букв и даже слов и замене их на неиспользуемые байты кода ДКОИ.

4. Посимвольное кодирование. Семибитовые и восьмибитовые коды не обеспечивают достаточно компактного кодирования символьной информации. Более пригодными для этой цели являются 5 - битовые коды, например международный телеграфный код МГК-2. Перевод информации в код МГК-2 возможен с помощью программного перекодирования или с использованием специальных элементов на основе больших интегральных схем (БИС). Пропускная способность каналов связи при передаче алфавитно-цифровой информации в коде МГК-2 повышается по сравнению с использованием восьмибитовых кодов почти на 40%.

2. Кодирование двоичным кодом

Для автоматизации работы с данными, относящимися к различным типам очень важно унифицировать их форму представления - для этого обычно используется приём кодирования, т.е. выражение данных одного типа через данные другого типа. Естественные человеческие языки - системы кодирования понятий для выражения мыслей посредством речи. К языкам близко примыкают азбуки - системы кодирования компонентов языка с помощью графических символов.

Своя системы существует и в вычислительной технике - она называется двоичным кодированием и основана на представлении данных последовательностью всего двух знаков: 0 и 1. Эти знаки называют двоичными цифрами, по-английски - binary digit или сокращённо bit (бит). Одним битом могут быть выражены два понятия: 0 или 1 (да или нет, чёрное или белое, истина или ложь и т.п.). Если количество битов увеличить до двух, то уже можно выразить четыре различных понятия. Тремя битами можно закодировать восемь различных значений.

3. Кодирование целых и действительных чисел

Целые числа кодируются двоичным кодом достаточно просто - необходимо взять целое число и делить его пополам до тех пор, пока частное не будет равно единице. Совокупность остатков от каждого деления, записанная справа налево вместе с последним частным, и образует двоичный аналог десятичного числа.

Для кодирования целых чисел от 0 до 255 достаточно иметь 8 разрядов двоичного кода (8 бит). 16 бит позволяют закодировать целые числа от 0 до 65535, а 24 - уже более 16,5 миллионов различных значений.

Для кодирования действительных чисел используют 80-разрядное кодирование. При этом число предварительно преобразовывают в нормализованную форму:

3,1414926 = 0,31415926 10 1

300 000 = 0,3 10 6

Первая часть числа называется мантиссой, а вторая - характеристикой. Большую часть из 80 бит отводят для хранения мантиссы (вместе со знаком) и некоторое фиксированное количество разрядов отводят для хранения характеристики.

4. Кодирование текстовых данных

Если каждому символу алфавита сопоставить определённое целое число, то с помощью двоичного кода можно кодировать текстовую информацию. Восьми двоичных разрядов достаточно для кодирования 256 различных символов. Это хватит, чтобы выразить различными комбинациями восьми битов все символы английского и русского языков, как строчные, так и прописные, а также знаки препинания, символы основных арифметических действий и некоторые общепринятые специальные символы.

Технически это выглядит очень просто, однако всегда существовали достаточно веские организационные сложности. В первые годы развития вычислительной техники они были связаны с отсутствием необходимых стандартов, а в настоящее время вызваны, наоборот, изобилием одновременно действующих и противоречивых стандартов. Для того чтобы весь мир одинаково кодировал текстовые данные, нужны единые таблицы кодирования, а это пока невозможно из-за противоречий между символами национальных алфавитов, а также противоречий корпоративного характера.

Для английского языка, захватившего де-факто нишу международного средства общения, противоречия уже сняты. Институт стандартизации США ввёл в действие систему кодирования ASCII (American Standard Code for Information Interchange - стандартный код информационного обмена США). В системе ASCII закреплены две таблицы кодирования базовая и расширенная. Базовая таблица закрепляет значения кодов от 0 до 127, а расширенная относится к символам с номерами от 128 до 255.

Первые 32 кода базовой таблицы, начиная с нулевого, отданы производителям аппаратных средств. В этой области размещаются управляющие коды, которым не соответствуют ни какие символы языков. Начиная с 32 по 127 код размещены коды символов английского алфавита, знаков препинания, арифметических действий и некоторых вспомогательных символов.

Кодировка символов русского языка, известная как кодировка Windows-1251, была введена «извне» - компанией Microsoft, но, учитывая широкое распространение операционных систем и других продуктов этой компании в России, она глубоко закрепилась и нашла широкое распространение.

Другая распространённая кодировка носит название КОИ-8 (код обмена информацией, восьмизначный) - её происхождение относится к временам Действия Совета Экономической Взаимопомощи государств Восточной Европы. Сегодня кодировка КОИ - 8 имеет широкое распространение в компьютерных сетях на территории России и в российском секторе Интернета.

Международный стандарт, в котором предусмотрена кодировка символов русского языка, носит названия ISO (International Standard Organization - Международный институт стандартизации). На практике данная кодировка используется редко.

5. Универсальная система кодирования текстовых данных

Если проанализировать организационные трудности, связанные с созданием единой системы кодирования текстовых данных, то можно прийти к выводу, что они вызваны ограниченным набором кодов (256). В то же время, очевидно, что если, кодировать символы не восьмиразрядными двоичными числами, а числами с большим разрядом то и диапазон возможных значений кодов станет на много больше. Такая система, основанная на 16-разрядном кодировании символов, получила название универсальной - UNICODE. Шестнадцать разрядов позволяют обеспечить уникальные коды для 65 536 различных символов - этого поля вполне достаточно для размещения в одной таблице символов большинства языков планеты.

Несмотря на тривиальную очевидность такого подхода, простой механический переход на данную систему долгое время сдерживался из-за недостатков ресурсов средств вычислительной техники (в системе кодирования UNICODE все текстовые документы становятся автоматически вдвое длиннее). Во второй половине 90-х годов технические средства достигли необходимого уровня обеспечения ресурсами, и сегодня мы наблюдаем постепенный перевод документов и программных средств на универсальную систему кодирования.

6. Кодирование графических данных

Если рассмотреть с помощью увеличительного стекла чёрно-белое графическое изображение, напечатанное в газете или книге, то можно увидеть, что оно состоит из мельчайших точек, образующих характерный узор, называемый растром. Поскольку линейные координаты и индивидуальные свойства каждой точки (яркость) можно выразить с помощью целых чисел, то можно сказать, что растровое кодирование позволяет использовать двоичный код для представления графических данных. Общепринятым на сегодняшний день считается представление чёрно-белых иллюстраций в виде комбинации точек с 256 градациями серого цвета, и, таким образом, для кодирования яркости любой точки обычно достаточно восьмиразрядного двоичного числа.

Для кодирования цветных графических изображений применяется принцип декомпозиции произвольного цвета на основные составляющие. В качестве таких составляющих используют три основные цвета: красный (Red), (Green) и синий (Blue). На практике считается, что любой цвет, видимый человеческим глазом, можно получить механического смешения этих трёх основных цветов. Такая система кодирования получила названия RGB по первым буквам основных цветов.

Режим представления цветной графики с использованием 24 двоичных разрядов называется полноцветным (True Color).

Каждому из основных цветов можно поставить в соответствие дополнительный цвет, т.е. цвет, дополняющий основной цвет до белого. Нетрудно заметить, что для любого из основных цветов дополнительным будет цвет, образованный суммой пары остальных основных цветов. Соответственно дополнительными цветами являются: голубой (Cyan), пурпурный (Magenta) и жёлтый (Yellow). Принцип декомпозиции произвольного цвета на составляющие компоненты можно применять не только для основных цветов, но и для дополнительных, т.е. любой цвет можно представить в виде суммы голубой, пурпурной и жёлтой составляющей. Такой метод кодирования цвета принят в полиграфии, но в полиграфии используется ещё и четвёртая краска - чёрная (Black). Поэтому данная система кодирования обозначается четырьмя буквами CMYK (чёрный цвет обозначается буквой К, потому, что буква В уже занята синим цветом), и для представления цветной графики в этой системе надо иметь 32 двоичных разряда. Такой режим также называется полноцветным.

Если уменьшить количество двоичных разрядов, используемых для кодирования цвета каждой точки, то можно сократить объём данных, но при этом диапазон кодируемых цветов заметно сокращается. Кодирование цветной графики 16-разрядными двоичными числами называется режимом High Color.

При кодировании информации о цвете с помощью восьми бит данных можно передать только 256 оттенков. Такой метод кодирования цвета называется индексным.

кодирование шифрование информация

7. Кодирование звуковой информации

Приёмы и методы работы со звуковой информацией пришли в вычислительную технику наиболее поздно. К тому же, в отличие от числовых, текстовых и графических данных, у звукозаписей не было столь же длительной и проверенной истории кодирования. В итоге методы кодирования звуковой информации двоичным кодом далеки от стандартизации. Множество отдельных компаний разработали свои корпоративные стандарты, но среди них можно выделить два основных направления.

1. Метод FM (Frequency Modulation) основан та том, что теоретически любой сложный звук можно разложить на последовательность простейших гармонических сигналов разных частот, каждый из которых представляет собой правильную синусоиду, а, следовательно, может быть описан числовыми параметрами, т.е. кодом. В природе звуковые сигналы имеют непрерывный спектр, т.е. являются аналоговыми. Их разложение в гармонические ряды и представление в виде дискретных цифровых сигналов выполняют специальный устройства - аналогово-цифровые преобразователи (АЦП). Обратное преобразование для воспроизведения звука, закодированного числовым кодом, выполняют цифро-аналоговые преобразователи (ЦАП). При таких преобразованиях неизбежны потери информации, связанные с методом кодирования, поэтому качество звукозаписи обычно получается не вполне удовлетворительным и соответствует качеству звучания простейших электромузыкальных инструментов с окрасом характерным для электронной музыки. В то же время данный метод копирования обеспечивает весьма компактный код, поэтому он нашёл применение ещё в те годы, когда ресурсы средств вычислительной техники были явно недостаточны.

2. Метод таблично волнового (Wave-Table) синтеза лучше соответствует современному уровню развития техники. В заранее подготовленных таблицах хранятся образцы звуков для множества различных музыкальных инструментах. В технике такие образцы называют сэмплами. Числовые коды выражают тип инструмента, номер его модели, высоту тона, продолжительность и интенсивность звука, динамику его изменения, некоторые параметры среды, в которой происходит звучание, а также прочие параметры, характеризующие особенности звучания. Поскольку в качестве образцов исполняются реальные звуки, то его качество получается очень высоким и приближается к качеству звучания реальных музыкальных инструментов.

8. Шифрование

Шифрование -- обратимое преобразование информации в целях сокрытия от неавторизованных лиц, с предоставлением, в это же время, авторизованным пользователям доступа к ней. Главным образом, шифрование служит задачей соблюдения конфиденциальности передаваемой информации. Важной особенностью любого алгоритма шифрования является использование ключа, который утверждает выбор конкретного преобразования из совокупности возможных для данного алгоритма.

В целом, шифрование состоит из двух составляющих-- зашифрование и расшифрование.

С помощью шифрования обеспечиваются три состояния безопасности информации:

· Конфиденциальность.

Шифрование используется для скрытия информации от неавторизованных пользователей при передаче или при хранении.

· Целостность.

Шифрование используется для предотвращения изменения информации при передаче или хранении.

· Идентифицируемость.

Шифрование используется для аутентификации источника информации и предотвращения отказа отправителя информации от того факта, что данные были отправлены именно им.

Для того, чтобы прочитать зашифрованную информацию, принимающей стороне необходимы ключ и дешифратор (устройство, реализующее алгоритм расшифровывания). Идея шифрования состоит в том, что злоумышленник, перехватив зашифрованные данные и не имея к ним ключа, не может ни прочитать, ни изменить передаваемую информацию. Кроме того, в современных криптосистемах (с открытым ключом) для шифрования, расшифрования данных могут использоваться разные ключи. Однако, с развитием криптоанализа, появились методики, позволяющие дешифровать закрытый текст без ключа. Они основаны на математическом анализе переданных данных.

9. Цели шифрования

Шифрование применяется для хранения важной информации в ненадёжных источниках и передачи её по незащищённым каналам связи. Такая передача данных представляет из себя два взаимно обратных процесса:

· Перед отправлением данных по линии связи или перед помещением на хранение они подвергаются зашифрованию .

· Для восстановления исходных данных из зашифрованных к ним применяется процедура расшифрования .

Шифрование изначально использовалось только для передачи конфиденциальной информации. Однако впоследствии шифровать информацию начали с целью её хранения в ненадёжных источниках. Шифрование информации с целью её хранения применяется и сейчас, это позволяет избежать необходимости в физически защищённом хранилище .

Шифром называется пара алгоритмов, реализующих каждое из указанных преобразований. Эти алгоритмы применяются к данным с использованием ключа. Ключи для шифрования и для расшифрования могут различаться, а могут быть одинаковыми. Секретность второго (расшифровывающего) из них делает данные недоступными для несанкционированного ознакомления, а секретность первого (шифрующего) делает невозможным внесение ложных данных. В первых методах шифрования использовались одинаковые ключи, однако в 1976 году были открыты алгоритмы с применением разных ключей. Сохранение этих ключей в секретности и правильное их разделение между адресатами является очень важной задачей с точки зрения сохранения конфиденциальности передаваемой информации. Эта задача исследуется в теории управления ключами (в некоторых источниках она упоминается как разделение секрета).

В настоящий момент существует огромное количество методов шифрования. Главным образом эти методы делятся, в зависимости от структуры используемых ключей, на симметричные методы и асимметричные методы. Кроме того, методы шифрования могут обладать различной криптостойкостью и по-разному обрабатывать входные данные-- блочные шифры и поточные шифры. Всеми этими методами, их созданием и анализом занимается наука криптография.

10. Методы шифрования

· Симметричное шифрование использует один и тот же ключ и для зашифрования, и для расшифрования.

· Асимметричное шифрование использует два разных ключа: один для зашифрования (который также называется открытым), другой для расшифрования (называется закрытым).

Эти методы решают определенные задачи и обладают как достоинствами, так и недостатками. Конкретный выбор применяемого метода зависит от целей, с которыми информация подвергается шифрованию.

Симметричное шифрование

В симметричных криптосистемах для шифрования и расшифрования используется один и тот же ключ. Отсюда название-- симметричные . Алгоритм и ключ выбирается заранее и известен обеим сторонам. Сохранение ключа в секретности является важной задачей для установления и поддержки защищённого канала связи. В связи с этим, возникает проблема начальной передачи ключа (синхронизации ключей). Кроме того существуют методы криптоатак, позволяющие так или иначе дешифровать информацию не имея ключа или же с помощью его перехвата на этапе согласования. В целом эти моменты являются проблемой криптостойкости конкретного алгоритма шифрования и являются аргументом при выборе конкретного алгоритма.

Симметричные, а конкретнее, алфавитные алгоритмы шифрования были одними из первых алгоритмов . Позднее было изобретено асимметричное шифрование, в котором ключи у собеседников разные.

Схема реализации

Задача. Есть два собеседника-- Алиса и Боб, они хотят обмениваться конфиденциальной информацией.

· Генерация ключа.

Боб (или Алиса) выбирает ключ шифрования и алгоритм (функции шифрования и расшифрования), затем посылает эту информацию Алисе (Бобу).

Алиса шифрует информацию с использованием полученного ключа.

И передает Бобу полученный шифротекст. То же самое делает Боб, если хочет отправить Алисе сообщение.

· Расшифрование сообщения.

Боб(Алиса), с помощью того же ключа, расшифровывает шифротекст.

Недостатками симметричного шифрования является проблема передачи ключа собеседнику и невозможность установить подлинность или авторство текста. Поэтому, например, в основе технологии цифровой подписи лежат асимметричные схемы.

Асимметричное шифрование

В системах с открытым ключом используются два ключа-- открытый и закрытый, связанные определенным математическим образом друг с другом. Открытый ключ передаётся по открытому (то есть незащищённому, доступному для наблюдения) каналу и используется для шифрования сообщения и для проверки ЭЦП. Для расшифровки сообщения и для генерации ЭЦП используется секретный ключ.

Данная схема решает проблему симметричных схем, связанную с начальной передачей ключа другой стороне. Если в симметричных схемах злоумышленник перехватит ключ, то он сможет как «слушать», так и вносить правки в передаваемую информацию. В асимметричных системах другой стороне передается открытый ключ, который позволяет шифровать, но не расшифровывать информацию. Таким образом решается проблема симметричных систем, связанная с синхронизацией ключей.

Первыми исследователями, которые изобрели и раскрыли понятие шифрования с открытым кодом, были Уитфилд Диффи и Мартин Хеллман из Стэнфордского университета и Ральф Меркле из Калифорнийского университета в Беркли. В 1976 году их работа «Новые направления в современной криптографии» открыла новую область в криптографии, теперь известную как криптография с открытым ключом.

Схема реализации

Задача. Есть два собеседника-- Алиса и Боб, Алиса хочет передавать Бобу конфиденциальную информацию.

· Генерация ключевой пары.

Боб выбирает алгоритм и пару открытый, закрытый ключи-- и посылает открытый ключ Алисе по открытому каналу.

· Шифрование и передача сообщения.

Алиса шифрует информацию с использованием открытого ключа Боба.

И передает Бобу полученный шифротекст.

· Расшифрование сообщения.

Боб, с помощью закрытого ключа, расшифровывает шифротекст.

Если необходимо наладить канал связи в обе стороны, то первые две операции необходимо проделать на обеих сторонах, таким образом, каждый будет знать свои закрытый, открытый ключи и открытый ключ собеседника. Закрытый ключ каждой стороны не передается по незащищенному каналу, тем самым оставаясь в секретности.

Литература

1. Симонович С.В. Информатика. Базовый курс. Дрофа 2000.

2. Савельев А. Я. Основы информатики: Учебник для вузов. Оникс 2001.

3. Баричев С. Введение в криптографию. Электронный сборник. Вече1998.

4. Э. Мэйволд. Безопасность сетей.-- 2006.-- 528с.

5. А. П. Алферов, А. Ю. Зубов, А. С. Кузьмин, А. В. Черемушкин. Основы Криптографии. -- Гелиос АРВ, 2002.

6. http://shifrovanie.narod.ru/articles/5n96y3a.htm

7. http://protect.htmlweb.ru/p11.htm

Размещено на Allbest.ru

...

Подобные документы

    Представление информации в двоичной системе. Необходимость кодирования в программировании. Кодирование графической информации, чисел, текста, звука. Разница между кодированием и шифрованием. Двоичное кодирование символьной (текстовой) информации.

    реферат , добавлен 27.03.2010

    Рассмотрение понятия и методов обработки данных; единицы их представления. Сущность информации; ее основные свойства - объективность, достоверность, доступность и актуальность. Принципы кодирования целых и действительных чисел, а также текстовых данных.

    контрольная работа , добавлен 10.02.2012

    Понятие информации и основные принципы ее кодирования, используемые методы и приемы, инструментарий и задачи. Специфические особенности процессов кодирования цифровой и текстовой, графической и звуковой информации. Логические основы работы компьютера.

    курсовая работа , добавлен 23.04.2014

    Понятие сигнала и данных. Кодирование информации, текстовых и графических данных. Представления цифровой информации. Логические схемы и основы алгебры логики. Комбинационные, последовательностные и арифметические устройства. Организация памяти в системе.

    шпаргалка , добавлен 16.12.2010

    Понятие и отличительные черты аналоговой и цифровой информации. Изучение единиц измерения цифровой информации: бит (двоичная цифра) и байт. Особенности передачи, методы кодирования и декодирования текстовой, звуковой и графической цифровой информации.

    реферат , добавлен 22.03.2010

    Знакомство с идеей векторного способа представления изображений в цифровом виде. Разработка последовательности команд для кодирования графического объекта. Основные команды; двоичное кодирование графической информации, растровый и векторный варианты.

    презентация , добавлен 05.01.2012

    Информация и информационные процессы в природе, обществе, технике. Информационная деятельность человека. Кодирование информации. Способы кодирования. Кодирование изображений. Информация в кибернетике. Свойства информации. Измерение количества информации.

    реферат , добавлен 18.11.2008

    Способы кодирования переписки в Древнем мире. Методы шифрования информации в позднее Средневековье и эпоху Возрождения. Страны Европы, разрабатывающие свои методы криптографии во время мировых войн. Компьютерные ноу-хау, применяемые в современном мире.

    реферат , добавлен 02.06.2014

    Кодирование как процесс представления информации в виде кода. Кодирование звуковой и видеоинформации, характеристика процесса формирования определенного представления информации. Особенности универсального дружественного интерфейса для пользователей.

    контрольная работа , добавлен 22.04.2011

    Сущность линейного и двухмерного кодирования. Схема проверки подлинности штрих-кода. Анализ способов кодирования информации. Расчет контрольной цифры. Штриховое кодирование как эффективное направление автоматизации процесса ввода и обработки информации.

12 ответов

Кодирование преобразует данные в другой формат, используя общедоступную схему, чтобы ее можно было легко отменить.

Шифрование преобразует данные в другой формат таким образом, что только отдельные лица могут изменить преобразование.

Кодировка предназначена для обеспечения удобства использования данных и использует общедоступные схемы.

Шифрование предназначено для обеспечения конфиденциальности данных, и, таким образом, способность изменять преобразование (ключи) ограничена определенными людьми.

Кодирование - это процесс преобразования данных, чтобы он мог передаваться без опасности по каналу связи или храниться без опасности на носителе данных. Например, компьютерное оборудование не манипулирует текстом, оно просто манипулирует байтами, поэтому текстовая кодировка - это описание того, как текст должен быть преобразован в байты. Аналогично, HTTP не позволяет передавать все символы безопасно, поэтому может потребоваться кодирование данных с использованием base64 (использует только буквы, цифры и два безопасных символа).

При кодировании или декодировании акцент делается на всех, имеющих один и тот же алгоритм, и этот алгоритм обычно хорошо документирован, широко распространен и довольно легко реализуется. Любой пользователь в конечном итоге может декодировать закодированные данные .

Шифрование, с другой стороны, применяет преобразование к части данных, которая может быть отменена только с помощью специфических (и секретных) знаний о том, как ее расшифровать. Основное внимание уделяется тому, чтобы кто-либо, кроме предполагаемого получателя, старался прочитать исходные данные. Алгоритм кодирования, который хранится в секрете, является формой шифрования, но довольно уязвимым (требуется умение и время на разработку любого типа шифрования, и по определению у вас не может быть кто-то другой для создания такого алгоритма кодирования для вас - или вы бы должны убить их). Вместо этого наиболее используемый метод шифрования использует секретные ключи: алгоритм хорошо известен, но для процесса шифрования и дешифрования требуется наличие одного и того же ключа для обеих операций, а ключ затем сохраняется в секрете. Расшифровка зашифрованных данных возможна только с помощью соответствующего ключа .

Кодирование:

    Цель: Цель кодирования состоит в том, чтобы преобразовывать данные, чтобы они могли (и безопасно) потребляться системой другого типа.

    Используется для: обеспечения удобства использования данных, т.е. Для обеспечения возможности его надлежащего использования.

    Механизм поиска данных: нет ключа и может быть легко изменен, если мы знаем, какой алгоритм использовался в кодировании.

    Используемые алгоритмы: ASCII, Unicode, кодировка URL, Base64.

    Пример: двоичные данные отправляются по электронной почте или просматриваются специальные символы на веб-странице.

Шифрование:

    Цель: Цель шифрования состоит в том, чтобы преобразовать данные, чтобы сохранить их в тайне от других.

    Используется для: сохранения конфиденциальности данных, т.е. Для обеспечения того, чтобы данные не могли потребляться кем-либо, кроме предполагаемого получателя (-ов).

    Механизм поиска данных. Исходные данные могут быть получены, если мы знаем используемый ключ и алгоритм шифрования.

    Используемые алгоритмы: AES, Blowfish, RSA.

    Пример. Отправка кому-то секретного письма, которое они должны только читать, или безопасно отправлять пароль через Интернет.

Кодирование - это процесс ввода последовательности символов в специальный формат для целей передачи или хранения

Шифрование - это процесс перевода данных в секретный код. Шифрование - наиболее эффективный способ обеспечения безопасности данных. Чтобы прочитать зашифрованный файл, вы должны иметь доступ к секретному ключу или паролю, который позволяет расшифровать его. Незашифрованные данные называются открытым текстом; зашифрованные данные называются шифровым текстом

См. кодировку как способ хранения или передачи данных между различными системами. Например, если вы хотите сохранить текст на жестком диске, вам нужно будет найти способ преобразования ваших символов в биты. В качестве альтернативы, если все, что у вас есть, это вспышка, вы можете закодировать текст, используя Morse. Результат всегда "читается", если вы знаете, как он хранится.

Шифрование означает, что вы хотите сделать ваши данные нечитабельными, зашифровав их с помощью алгоритма. Например, Цезарь сделал это, заменив каждую букву на другую. Результат здесь не читается, если вы не знаете секретный "ключ", с которым был зашифрован.

Я бы сказал, что обе операции преобразуют информацию из одной формы в другую, причем разница заключается в следующем:

  • Кодирование означает преобразование информации из одной формы в другую, в большинстве случаев она легко обратима.
  • Шифрование означает, что исходная информация скрыта и включает ключи шифрования, которые должны быть переданы процессу шифрования/дешифрования для выполнения преобразования.

Итак, если он включает в себя (симметричные или асимметричные) ключи (ака "секрет"), это шифрование, в противном случае это кодирование.

Кодировка предназначена для поддержки удобства использования и может быть отменена путем использования того же алгоритма, который кодировал контент, т.е. не используется ключ.

Шифрование предназначено для поддержания конфиденциальности и требует использования ключа (хранимого в секрете), чтобы вернуться к открытому тексту.

Также есть два основных термина, которые приводят к путанице в мире безопасности Хеширование и обфускация

Хеширование предназначено для проверки целостности содержимого путем обнаружения всех изменений с помощью явных изменений в хеш-выходе.

Обфускация используется, чтобы люди не могли понять смысл чего-то и часто используется с компьютерным кодом, чтобы предотвратить успешную обратную разработку и/или кражу функциональности продуктов.

Кодировка - пример данных 16
Тогда кодировка 10000 означает, что это двоичный формат или ASCII или UNCODED и т.д., Который может быть легко прочитан любой системой, чтобы понять его истинное значение

Шифрование - пример данных равен 16, тогда значение encryprion равно 3t57 или может быть любым, в зависимости от того, какой алгоритм используется для шифрования, который может быть легко прочитан любой системой, НО только тот, кто понимает это на самом деле, и имеет ключ дешифрования.

Кодировка:

Цель кодирования состоит в том, чтобы преобразовывать данные, чтобы они могли (и безопасно) потребляться системой другого типа, например. двоичные данные, отправляемые по электронной почте, или просмотр специальных символов на веб-странице. Цель состоит не в том, чтобы хранить информацию в секрете, а в том, чтобы обеспечить ее надлежащее потребление. Кодирование преобразует данные в другой формат, используя общедоступную схему, чтобы ее можно было легко отменить. Он не требует ключа, поскольку единственное, что требуется для декодирования, - это алгоритм, который использовался для его кодирования.

Примеры: ASCII, Unicode, URL Encoding, Base64

Шифрование:

Цель шифрования состоит в том, чтобы преобразовать данные, чтобы сохранить их в секрете от других, например. отправив кому-то секретное письмо, которое только они должны уметь читать или безопасно отправлять пароль через Интернет. Вместо того, чтобы сосредоточиться на удобстве использования, цель состоит в том, чтобы гарантировать, что данные не могут быть использованы кем-либо, кроме предполагаемого получателя.

Шифрование преобразует данные в другой формат таким образом, что только отдельные лица могут изменить преобразование. Он использует ключ, который хранится в секрете в сочетании с открытым текстом и алгоритмом для выполнения операции шифрования. Таким образом, зашифрованный текст, алгоритм и ключ необходимы для возврата к открытому тексту.

Примеры: AES, Blowfish, RSA

Пример: ASCII, BASE64, UNICODE

ASCII ЗНАЧЕНИЕ "A" IS: 65

Шифрование:

Шифрование в технике кодирования, при которой сообщение кодируется с использованием алгоритма шифрования таким образом, что только авторизованный персонал может получить доступ к сообщению или информации.

Это специальный тип кодировки, который используется для передачи личных данных, например, для отправки комбинации имени пользователя и пароля через Интернет для входа в систему по электронной почте.

При шифровании данные, которые должны быть зашифрованы (называемые открытым текстом), преобразуются с использованием алгоритма шифрования, такого как шифрование AES или шифрование RSA, с использованием секретного ключа, называемого шифром. Зашифрованные данные называются зашифрованным текстом, и, наконец, секретный ключ может использоваться предполагаемым получателем для преобразования его обратно в обычный текст.

Описание: Вопросами защиты и скрытия информации занимается наука кpиптология (криптос – тайный, логос – наука). Кpиптология имеет два основных напpавления – кpиптогpафию и кpиптоанализ. Цели этих направлений пpотивоположны. Кpиптогpафия занимается построением и исследованием математических методов пpеобpазования инфоpмации, а кpиптоанализ – исследованием возможности pасшифpовки инфоpмации без ключа. Термин "криптография" происходит от двух греческих слов: криптоc и грофейн – писать. Таким образом, это тайнопись, система перекодировки сообщения с целью сделать его непонятным для непосвященных лиц и дисциплина, изучающая общие свойства и принципы систем тайнописи. Реферат содержит 1 файл:

Реферат по информатике(оригинал).docx

  1. Введение………………………………………………………… …………....…3
  2. Основные понятия кодирования и шифрования……………….…………......4
  3. Способы кодирования информации..……………………………………….…5
    1. Кодирование двоичным кодом……………………………….………….....6
    2. Кодирование символьной информации………………….………………...7
    3. Кодирование числовой информации………………………………….…...8
    4. Кодирование текстовой информации……………………………………...9
    5. Универсальное кодирование текстовой информации…………………...14
    6. Кодирование графической информации………………………………….15
    7. Кодирование звуковой информации………………………….………..…17
  4. Шифрование…………………………………………………… ….……….….19
    1. Виды шифров……………………………………………………………… 20
    2. Надежность в шифровании……………………………………………..… 21
    3. Криптографические системы…………………………………………...…22
  5. Заключение…………………………………………………… ………….…....24
  6. Список литературы…………………………………………………… …...….25

Введение

В современном обществе успех любого вида деятельности сильно зависит от обладания определенными сведениями (информацией) и от отсутствия их (ее) у конкурентов. Чем сильней проявляется указанный эффект, тем больше потенциальные убытки от злоупотреблений в информационной сфере и тем больше потребность в защите информации. Одним словом, возникновение индустрии обработки информации привело к возникновению индустрии средств ее защиты и к актуализации самой проблемы защиты информации, проблемы информационной безопасности.

Одна из наиболее важных задач (всего общества) – задача кодирования сообщений и шифрования информации.

Вопросами защиты и скрытия информации занимается наука кpиптология (криптос – тайный, логос – наука). Кpиптология имеет два основных напpавления – кpиптогpафию и кpиптоанализ. Цели этих направлений пpотивоположны. Кpиптогpафия занимается построением и исследованием математических методов пpеобpазования инфоpмации, а кpиптоанализ – исследованием возможности pасшифpовки инфоpмации без ключа. Термин "криптография" происходит от двух греческих слов: криптоc и грофейн – писать. Таким образом, это тайнопись, система перекодировки сообщения с целью сделать его непонятным для непосвященных лиц и дисциплина, изучающая общие свойства и принципы систем тайнописи.

Основные понятия кодирования и шифрования

Код – правило соответствия набора знаков одного множества Х знакам другого множества Y. Если каждому символу Х при кодировании соответствует отдельный знак Y, то это кодирование. Если для каждого символа из Y однозначно отыщется по некоторому правилу его прообраз в X, то это правило называется декодированием.

Знак - это элемент конечного множества отличных друг от друга элементов.

Кодирование – процесс преобразования букв (слов) алфавита Х в буквы (слова) алфавита Y.

Сообщение, которое мы хотим передать адресату, назовем открытым сообщением. Оно, естественно, определено над некоторым алфавитом. Зашифрованное сообщение может быть построено над другим алфавитом. Назовем его закрытым сообщением.

Шифрование - процесс преобразования открытого сообщения в закрытое сообщение.

Шифр - какая-либо система преобразования текста (код) для обеспечения секретности передаваемой информации.

Способы кодирования информации

Одна и та же информация может быть представлена (закодирована) в нескольких формах. C появлением компьютеров возникла необходимость кодирования всех видов информации, с которыми имеет дело и отдельный человек, и человечество в целом. Но решать задачу кодирования информации человечество начало задолго до появления компьютеров. Грандиозные достижения человечества - письменность и арифметика - есть не что иное, как система кодирования речи и числовой информации. Информация никогда не появляется в чистом виде, она всегда как-то представлена, как-то закодирована.

Кодирование двоичным кодом

Для автоматизации работы с данными, относящимися к различным типам очень важно унифицировать их форму представления – для этого обычно используется приём кодирования, т.е. выражение данных одного типа через данные другого типа. Естественные человеческие языки – системы кодирования понятий для выражения мыслей посредством речи. К языкам близко примыкают азбуки – системы кодирования компонентов языка с помощью графических символов.

Своя системы существует и в вычислительной технике – она называется двоичным кодированием и основана на представлении данных последовательностью всего двух знаков: 0 и 1. Эти знаки называют двоичными цифрами, по-английски – binary digit или сокращённо bit (бит). Одним битом могут быть выражены два понятия: 0 или 1 (да или нет, чёрное или белое, истина или ложь и т.п.). Если количество битов увеличить до двух, то уже можно выразить четыре различных понятия. Тремя битами можно закодировать восемь различных значений.

Кодирование символьной (текстовой) информации

Основная операция, производимая над отдельными символами текста - сравнение символов .

При сравнении символов наиболее важными аспектами являются уникальность кода для каждого символа и длина этого кода, а сам выбор принципа кодирования практически не имеет значения.

Для кодирования текстов используются различные таблицы перекодировки. Важно, чтобы при кодировании и декодировании одного и того же текста использовалась одна и та же таблица.

Таблица перекодировки - таблица, содержащая упорядоченный некоторым образом перечень кодируемых символов, в соответствии с которой происходит преобразование символа в его двоичный код и обратно.

Наиболее популярные таблицы перекодировки: ДКОИ-8, ASCII, CP1251, Unicode.

Исторически сложилось, что в качестве длины кода для кодирования символов было выбрано 8 бит или 1 байт. Поэтому чаще всего одному символу текста, хранимому в компьютере, соответствует один байт памяти.

Различных комбинаций из 0 и 1 при длине кода 8 бит может быть 28 = 256, поэтому с помощью одной таблицы перекодировки можно закодировать не более 256 символов. При длине кода в 2 байта (16 бит) можно закодировать 65536 символов.

Кодирование числовой информации

Сходство в кодировании числовой и текстовой информации состоит в следующем: чтобы можно было сравнивать данные этого типа, у разных чисел (как и у разных символов) должен быть различный код. Основное отличие числовых данных от символьных заключается в том, что над числами кроме операции сравнения производятся разнообразные математические операции: сложение, умножение, извлечение корня, вычисление логарифма и пр. Правила выполнения этих операций в математике подробно разработаны для чисел, представленных в позиционной системе счисления.

Загрузка...
Top